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PITFALLS IN THE USE OF IMPERFECT INFORMATION

INTRODUCTION

> High-intensity conflict has come a long way since the days when a

proverbial Napoleon could stand on a hillside and take in the full scope

of the battle. Commanders at the corps or theater level do not rely on

their own senses for information, but on a group of specialists

coordinated by the intelligence officer. That officer serves as a

conduit to the commander, and is his source of information about the

enemy. The quality of the commander's understanding of enemy intentions

depends on the quality of the communication between the intelligence

officer and the commander.

Between the two extremes -- either the commander has no

intelligence regarding enemy intentions, or enemy intentions are obvious

-- lies the case of imperfect information, where there is non-trivial

yet uncertain knowledge about the other side's intentions. In this kind

of situation, breakdowns in communication can produce two possible

results:

Under-confidence: the intelligence officer communicates the

uncertainty, and the commander disregards the information

because it is uncertain. 4;,-

Over-confidence: the intelligence officer suppresses the

uncertainty, and the commander takes the information at face

value.' - , .,

This paper considers the impact of these pitfalls by using game

theory and decision theory to show how the outcome 9f "faulty" decisions

compares with the outcome from "good" decisions.

'Of course, the commander could suppress the uncertainty all by
himself.
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AN EXAMPLE

Consider a zero-sum game between two opponents, designated Red and

Blue. The range of strategies and their payoffs are common knowledge,

but suppose that Blue has some knowledge of which strategy Red may

choose; that is, Blue has a probability distribution for Red strategies.

At the lowest level of information, Blue merely calculates the

rational strategy that Red would adopt using game theory. In

particular, if the solution is a mixed strategy, Blue remains uncertain

about Red's choice of strategy.

At an intermediate level, Blue might have some intelligence on Red,

such as observations of preparations for Red's next move. This

information, though imperfect, enables Blue to employ decision theory.

Figure 1 shows a simple example in which Red has two strategies, R1

and R2. Blue's strategy Bl is excellent as a counter to Rl, so the

payoff equals 1, the best that can happen (victory). Likewise B2 is a

counter to R2. However, B1 is a dismal match to R2, so the payoff

equals 0, the worst that can happen (defeat). Likewise, B2 is a

mismatch for Rl. Blue also has a hedging strategy B3, with which Blue

can muddle through no matter what Red may choose. The payoff for B3

equals u, some value between 1/2 and 1.

Red Strategies

Rl R2
---------------

B1l 1 I 0
+---------------+

Blue Strategies B2 I 0 I 1 I
-------------- +

B3 I u I u I where 1/2 < u <
Accesio, For --------------- +
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. Fig. 1--Payoff Matrix for Blue
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For instance, suppose that in a conventional war in Europe, Red has

an operational maneuver group (OMG) to insert. Let R1 and R2 correspond

to the possible places to insert the OMG. Blue wants to interdict the

OMG and also send ground forces to reinforce the anticipated insertion

point. Let Bl and B2 correspond to the possible places to anticipate

the OMG. Let B3 be the strategy of sending half of the forces to each

place.

The outcome of Bl against Rl (B2 against R2) is the successful

"chewing up" of the OMG. The outcome of B1 against R2 (B2 against R1)

is a Blue attack on the wrong target, and Red achieves a breakthrough.

The outcome of B3 leads to neither the destruction of the OMG nor a

nasty breakthrough, but something in between, not of a spectacular

nature. The "value" of B3, u, is not calculated from objective results

of battle (how many km of Red advance, how much attrition), but rather u

indicates the commander's preference for muddling through for sure

compared to risking defeat. A lot of subjective considerations get

wrapped up in this little number. As will be shown below, u is a

preference-probability 2 because it states how the commander values the

outcome of B3 compared to the best and worst possible outcomes.

Here are examples of ideas that might be rattling around inside the

head of a risk-averse (high-u) commander:

* "We only get one chance for defense. If they get a

breakthrough, it's all over!"

* "If I lose this battle, my reputation is ruined!"

A less risk-averse (moderate-u) commander might be thinking:

* "This is just one of many battles."

* "If I win this battle, I'm a hero and I get a rapid promotion."

2Robert D. Behn and James W. Vaupel, Quick Analysis for Busy
Decision Makers, Basic Books, 1982, pp. 26-46.
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Specifically, if the commander could choose between muddling

through for sure on the one hand, and a lottery like that represented in

Figure 2, he would have three choices which depend on a comparison of a

value u and a probability X:

X < u, choose to muddle through for sure.

X = u, be indifferent between the options.

X > u, choose the risky lottery.

Hence u is not only the outcome of strategy B3, it is also a

quantitative indication of the commander's willingness to take a risk.

The more risk-averse the commander, the closer u gets to 1. If the

commander thinks that defeat is awful, that attitude tends to raise u,

but if he thinks that victory is far better than muddling, that thought

tends to lower u.

prob = X
+-----------+ Victory
I

Lottery --------
---------------------- +chancel

Iprob = l-X
+-------------+ Defeat

I I
IchoicelI I
+- -+- _-+

I
I
I Certainty
+ ------------------------------------ + Muddle Through

X = probability of victory if the lottery is chosen

Fig. 2--Hypothetical Lottery
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GAME THEORY

Game theory applies to the case in which Blue has no information

about Red intentions. For the two-player zero-sum game, two points of

view are possible.3  One view looks at the opponent's capability; this

leads to the "maxmin" or "minimax" principle. The other approach looks

at the opponent's intentions. Both approaches lead to the same

solution. I adopt the latter approach here, because it serves as a

ground-work for the imperfect-information case.

Let bl,b2 b3 be the frequency with which Blue selects strategy

Bl,B2,B3, respectively. Let r1 ,r2 be the frequency with which Red

selects strategy Rl,R2. The value v of the game to Blue is given by

v = (b1 r 1) + (b 1 r2 0)

+ (b2 r O) + (b2 r2 )

+ (b3 r 1 u) + (b3 r2 u).

By symmetry it follows that

bI = b2 = 1/2(1 b)., and rI 
= r2 = 1/2.

Thus the formula boils down to

v = 1/2(1 - b3) + (b. u) = 1/2 + (u - 1/2) b3.

Clearly, for u > 1/2, the game-theoretic solution consists of always

choosing B3, the muddle-through strategy, for the value

V = U.

3See, for example, Jonathan Cave, Introduction to Game Theory, The
RAND Corporation, P-7336, April 1987.
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IMPERFECT INFORMATION

Now suppose that Blue has some intelligence about what Red plans to

do, that based on some sort of analysis Blue estimates the probdbility

of Red choosing Ri to be p, and the probability of Red selecting R2 to

be 1 - p. The symmetry is broken, so the preceding equations no longer

apply. The expected outcome to Blue is now given by

v = (b p 1) + [b1 (1-p) 0]

+ (b2 p O) + [b2 (l-p) 1]

+ (b3 p u) + [b 3 (1-p) u]'

This simply boils down to

v = (b1 p) + [b2 (1-p)] + (b3 u).

The choice of strategy, as well as the expected outcome, depends on p

and u:

p > u, choose B1 for an expected outcome of p.

(1-p) > u, choose B2 for an expected outcome of 1 - p.

p < u and (l-p) < u, choose B3 for an outcome of u.

Note that in some cases Blue can do better than game theory, that

is, to obtain an expected outcome in excess of u, as indicated in Figure

3. For low p, Blue has good reason to believe that Red will choose R2,

so Blue is willing to take a small risk in the face of a good

opportunity for victory. Likewise, for high p, Blue expects R1 and so

chooses BI. For intermediate values of p, the Blue commander decides

that the risk is too great, so he chooses to muddle through with B3.

Note that the decision-making depends critically on u. The more

risk-averse the commander, the higher his level of u, the less likely he

will make use of the available imperfect information.
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Fig. 3--Imperfect Information and Game Outcome
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PITFALLS

Two pitfalls can occur when communicating and using imperfect

information. One stems from under-confidence, the other from over-

confidence.

Under-confidence

Suppose that the commander says, "Where do these probabilities come

from anyway? Why should I believe them?" Indeed, if p has an

intermediate value, such a response is harmless. However, if p or 1 - p

exceeds u, then the commander loses something by throwing away the

information. The loss depends on both p and u, as indicated in Figure

3." The more risk-averse the commander, the less likely that he loses

any opportunity for victory, and if so, the loss is slight (according to

his risk preference).

Over-confidence

Suppose that the intelligent officer subjectively resolves his

uncertainty and presents his best estimate of Red's choice. 5 The

unwitting commander can then say, "Aha! I have just the strategy for

victory."

If p is close to 0 or close to 1, such confidence entails little

risk. For intermediate p, the risk is excessive. Again, the loss

depends on both p and u. The more risk-averse the commander, the

greater his chagrin if the best estimate turns out to be wrong.

'The area between the curves has no obvious interpretation, unless
all values of p are equally likely.

'See for example a discussion of the subjective resolution of
uncertainty in John D. Steinbruner, The Cybernetic Theory of Decision,
Princeton University Press, 1974, pp. 109-124.
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DISCUSSION

The risk-averse commander does not have much use for imperfect

information. He throws away information unless it is nearly certain.

If a commander is willing to take risks, he can make use of imperfect

information in a broader range of situations.

If a commander does not trust the information, and throws it away,

he can deprive himself of some good opportunities for victory. He

hedges even when the probability of defeat is small.

If a commander receives only best estimates, and knows that the

estimates are over-confident, he may throw them out. In this case, the

commander over-compensates by becoming under-confident.

However, if a commander accepts best estimates, and acts on them,

he can take on high risks due to the self-deception. This is an abuse

of information that "just isn't there."

The intelligence officer and the commander need to communicate

clearly with each other. The former needs to know the latter's

preference for boldness and for hedging. The latter needs to know the

former's tendency to emphasize or ignore uncertainty. Terms such as
"possibly," "likely," and "probably" may serve these needs. However,

explicit quantification of p and u provides a much-needed transparency.'

6In practice both parties may often provide interval estimates of p
and u rather than point estimates.


